Centering Clamping Mandrels • cylindrical

23340.0520

Product Description

The centering clamping mandrels, cylindrical are ideal for use in fixture construction. They enable workpieces to be clamped with a hole on their inside diameter and therefore without interfering clamping edges. The centering clamping mandrels can be mounted on grid and fixture plates, for example, by pressing them into bores or screwing them into threads.

They enable exact positioning, offer precise repeat accuracy and achieve high holding forces when clamping parts with holes. The centring clamping mandrels offer the possibility of fixing complex workpieces without external clamping elements to enable these components to be machined on 5 sides.

The centering clamping mandrels, cylindrical have the following characteristics:

- · Clamping stroke max. 0.7 mm
- Two versions for press-in or screw-in
- · Made of stainless steel or free-cutting steel
- Clamping body can be machined very easily (for adaptation to bore diameter)

Material

Body

· Free cutting steel, blackened

Clamping screw

Steel

Assembly

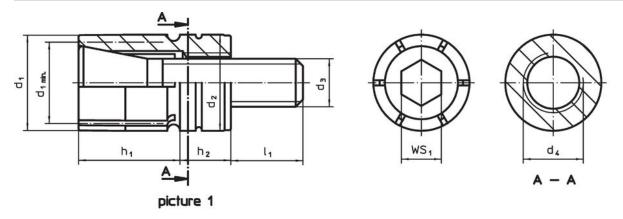
The centering clamping mandrel can be adjusted to the respective diameter by turning or milling

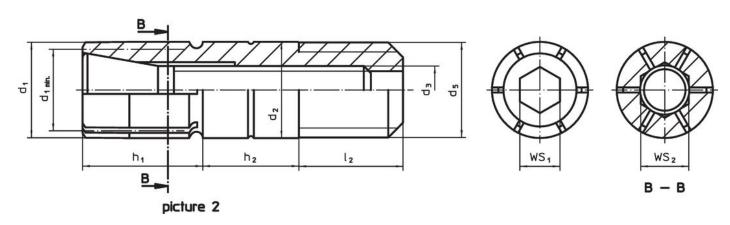
Picture 1 - Mounting in bore hole or socket. Thread for clamping screw required. Picture 2 – Mounting in thread.

Remove the clamping screw from the body for the assembly. Srew-in centering clamping element and tighten using the wrench size (WS₂).

Operation

It is operated using the conical clamping screw (WS $_1$). This expands the body by up to 0.7 mm.



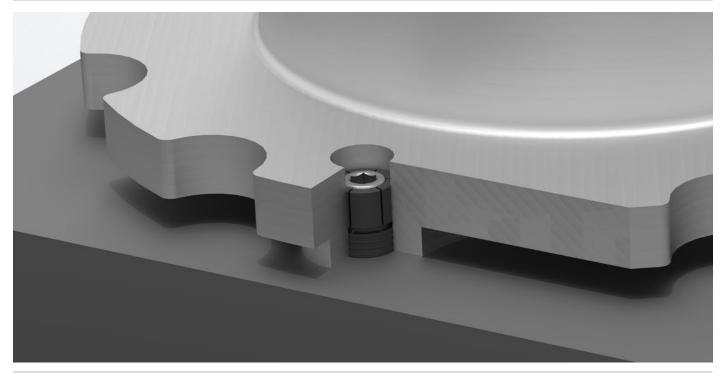

Erwin Halder KG

www.halder.com Page 1 of 3

Published on: 14.11.2024

Drawing

Order information


Dimensions									Number of	Clamping	Tightening	Location	I	Art. No.	
d ₁	d ₁	d ₂	d ₃	d ₄	h₁	h ₂	I ₁	WS₁	segments	force	torque	hole			
	min.	-0.025								max.	max.	H7			
[mm]										[kN]	[Nm]	[mm]	[g]		
press-fit	press-fit – picture 1, Free cutting steel														
20	16	20	M10	M12	14	8	13	8	6	20	60	20	51	23340.0520	

Erwin Halder KG

Page 2 of 3 Published on: 14.11.2024

www.halder.com

Application example

Compliance

RoHS compliant

Compliant according to Directive 2011/65/EU and Directive 2015/863.

Does not contain SVHC substances

No SVHC substances with more than 0.1% w/w contained - SVHC list [REACH] as of 27.06.2024.

Erwin Halder KG

Does not contain Proposition 65 substances

No Proposition 65 substances included. https://www.P65Warnings.ca.gov/

Free from Conflict Minerals

This product does not contain any substances designated as "conflict minerals" such as tantalum, tin, gold or tungsten from the Democratic Republic of Congo or adjacent countries.

Page 3 of 3

Published on: 14.11.2024

www.halder.com